Chapter 1. On the Nature and Value of Social Software for Learning

Download:  Chapter 1. On the Nature and Value of Social Software for Learning

In this chapter we define what social software is, and present a list of ways that it can be of use to learners, describing some of the potentially valuable functions and features that are available in these systems. The chapter is intended to establish a common understanding and vocabulary that provides a background to issues explored in greater depth throughout the rest of the book.

The first reason to learn online with others is opportunity: what Stuart Kauffman (2000) calls the “adjacent possible.” New technologies offer such an opportunity. There are more networked devices than people in the world, with around one-third of the world’s population (2.26 billion people as of 2011) having access to the Internet, a figure projected to rise to around 40% by 2016 (Broadband Commission, 2012, p. 44). In Europe, over 60% of the population has regular access to the Internet, in North America, over 78% (Internet World Stats, 2012). In some countries, nearly the entire population has regular, personal Internet access. The digital traces this population leaves are vast. Google alone indexes over 30 trillion Web pages (Koetsier, 2013), which does not include countless others that are not indexed or contain dynamic, ever-changing content. The International Telecommunication Union (2012) reports that there were over 6 billion cellphone subscriptions worldwide by the end of 2011. Of those, over 30% (and rising) sold are smartphones, capable of connecting to the Internet. Nevertheless, there remain massive inequalities and barriers: only 24% of people in developing nations currently have Internet access and the number of countries that censor or prohibit the use of the Internet is rising. However, it is not unreasonable to suppose that, before very long, nearly every human on the planet may be able to connect with nearly every other in order to share information, knowledge, and ideas in a myriad of ways, virtually instantaneously. In our pockets we carry devices that can connect us not only to billions of living people but also with the digital traces they have left and the things they have shared, and with much of the accumulated knowledge of our forebears. Not only can we connect with people and their products but we can also connect with their aggregates—groups, organizations, companies, institutions, networks, communities, nations, and cultures. Social technologies for learning, from email to learning management systems, are ubiquitous in our schools and colleges.

The second reason for learning online with others is that, with every connection, direct and indirect, comes the opportunity to learn, and learning happens in many of these interactions. Almost every search on Google, visit to a page on Wikipedia or a how-to site is an act of intentional learning, one that is only possible because many people have, intentionally or otherwise, acted on our behalf as teachers. Meanwhile, a vast amount of intentional and unintentional learning is facilitated every day through posts on Twitter, Facebook, YouTube, LinkedIn, Pinterest, and countless other services. Smartphones and dumbphones (basic phones) are increasingly used more as information-finding devices than as simple communication tools. Large-scale courses and tutorials, often clumped together under the label of MOOCs (massive open online courses) are gathering millions of learners, eager and willing to learn.

In prehistoric times, knowledge spread through time and space by word of mouth and through example, stories and songs, apprenticeships, direct engagement, copying and observing others. The temporal and physical space between the original knowledge creator and knowledge constructor was sometimes very great, but the learner and teacher were physically and temporally adjacent. This is, of course, an oversimplification, even if we conveniently ignore things like cave paintings and other representations of knowledge such as sculpture and jewellery available to our ancestors. From the time we first started shaping tools, clothing, dwellings, and weapons, we have offloaded some of our cognitive processes into the spaces around us and shared in the intelligence of others as a result. In some cases, such as the carefully aligned stones of Stonehenge or cuneiform impressions in clay, the cognitive element of the artifacts we create is obvious: these are technologies at least partly intended to embody and enable thinking, though they may serve other functions as well. In the case of Stonehenge, the stones’ alignment enabled prediction and calculation of solstices and other significant temporal events. Cuneiform impressions served many purposes that extended our cognition, including as an adjunct to memory, a means to record and manipulate numbers, and as a way of sharing our knowledge with those not occupying the same time and space. However, even the haft of a spear or the pressed clay of a drinking bowl makes a tool that we think with, a shared object of cognition from which our learning and thinking cannot be glibly separated (Saloman, 1993). These are shared objects that are innately social: they do not just perform tasks for individuals, but carry shared meanings, communicable purposes, and the memories of those who created, refined, and developed them over time. As S. Johnson (2012) observes about the skill of the pilot in a modern airplane, the pilot’s success is only possible through a “duet” with the thousands of people whose learning is embodied in the systems, devices, and methods used to both create and sustain the aircraft.

Historically, learning was nearly always with and from a crowd: methods, tools, customs, dances, music and stories, whether prototypical or fully formed, all played a role in establishing a collective, learned culture. While the transmission of knowledge could be, and perhaps often was a one-to-one exchange, the innate physics of dance, music, and speech made much cultural transmission a crowd phenomenon, a sharable and shared performance.

In the past, written words conveyed and shared our insights and ideas beyond co-located groups, separate in both space and time. Writing is a technology that allows one individual to directly address another, whether separated by thousands of years, thousands of miles, or both. Artifacts like paintings and sculptures provide further examples of this mode of engagement, communicating facts, beliefs, and emotions over time and space. Similarly, once the skills of creating and reading have been mastered, writing seemingly requires no further interpretation or context to complete the connection between learner and teacher, though our familiarity belies much of the vast complexity of mastering the tools and sharing meaning in the most intricate and subtle of technologies. Writing is, in a sense, a one-to-one technology that may be replicated many times, the same one communicating with many other individuals, one at a time. Rarely, save in some limited contexts such as inscriptions on statues, shop signs, scoreboards at football games, or sacred texts read aloud in public gatherings, is writing a one-to-many technology like speech. Writing is ostensibly direct, a communication channel between writer and reader that seems unmediated and undistorted by the intercession of others. It thus serves to contract time and space. Even today, when writing is a medium that may be shared with billions of others both now and in the indeterminate future, it shares this interesting characteristic: it is at once the epitome of social technology and the most private of engagements since the reader is potentially unknown to the writer, and his or her context may be entirely different from that of the writer’s.

The invention of printing changed the scale of this imbalance between the one and the many. Publication for the masses—without the need for an intermediary interpreter, or a creator of glosses—separated the writer (content creator) and the crowd almost entirely. This process continued in the nineteenth and twentieth centuries, which saw the emergence of mass, instantaneous, and global communications: sound and video recording, radio and television broadcasting, and a host of accompanying technologies and infrastructures combined with ever-more powerful tools for printing, and the dissemination of printed materials made one-to-many communication the predominant form of knowledge distribution. Though social in some important ways, this development made possible mass educational processes that were in many other ways asocial. Alongside that, first the telegraph and fax and later the telephone and mobile phone made it simple to engage in near instantaneous one-to-one communication across vast distances almost as easily as local conversations. A many-to-many gap had been created.

In recent decades we have witnessed the increasing convergence of all forms of communication, publication, and information-sharing onto networked digital platforms—mainly the Internet but also cellular networks, digital TV, gaming networks, satellite communication systems, personal area networks, and other networked digital media. Collectively, to emphasize that we are not always simply talking about the Internet, we will refer to this connected set of tools and the interactions they enable as “cyberspace,” a term first coined by William Gibson (1984). Cyberspace may mimic other media, but it always carries with it far greater potential for two-or-more-way communication. In addition, its digital character makes the possibility of precise replication a simple task that, as often as not, needs little or no thought or effort to achieve. Even when there is no intention or facility for dialogue, the protocols and standards that underpin computer networking systems are seething with internal and hidden dialogues, exchanges, caches, and buffers that replicate and communicate between the devices we attach to our networks. Earlier forms of learning and teaching tools still exist but, increasingly, they are formatted first for cyberspace, and then placed in a secondary medium such as textbooks, classrooms, DVDs, or broadcast television.

This shift of both communication and content to cyberspace has profound implications for both lifelong learning and the formal education produced by our schools and universities. Clay Shirky (2008), in his insightful analysis of major communication innovations in history notes that cyberspace encompasses all previous innovations (print, video, radio, cinema, etc.) and supports one-to-one, one-to-many, and many-to-many communications at the same time, using the same low-cost tools. Beyond what is practical or possible in conventional human interaction, cyberspace supports dynamic collective knowledge generation. Our activities in cyberspace create traces and artifacts that, when aggregated, allow us to better understand the activities, ideas, and the nature of other individuals, along with the societies and communities they belong to; these activities can also provide novel insights into our own behaviours and interests.

All of these capabilities create new and very exciting opportunities for formal and informal learning. However, McCarthy, Miller, and Skidmore have argued that these “networks are the language of our times, but our institutions are not programmed to understand them” (2004, p. 11). One major purpose of this book, therefore, is to explore these opportunities and provide both understanding and keys to action that can be used by educators and, as importantly, by learners.

As McLuhan (1994) and many others have observed, there is a rich interplay between the medium and the message it conveys. The media utilized by educators have very profound effects on the content taught, the organization of the learning process, and the range of available learning activities. The convergence of media in cyberspace has radically altered the conditions for teaching and learning, causing some to complain about the mismatch between the skills needed to operate effectively in a net-infused society, and the skills developed and information created in most of our industrial age schools and universities (Oliver, 2008). As W. Richardson notes,

in an environment where it’s easy to publish to the globe, it feels more and more hollow to ask students to “hand in” their homework to an audience of one . . . when many of our students are already building networks far beyond our classroom walls, forming communities around their passions and their talents, it’s not hard to understand why rows of desks and time-constrained schedules and standardized tests are feeling more and more limiting and ineffective. (2006, p. 36)

The bulk of the applications introduced and discussed in this book can be classified as social learning technologies. The “social” attribute comes from the fact that they acquire their value when used by two or more people. Many of these tools are used to support sharing, annotating, discussing, editing, and cooperatively or collaboratively constructing knowledge among collections of learners and “teachers” (a loose term for anyone, or ones, along with machinery or systems that make learning more effective). Other social technologies connect people differently and less directly—for instance, by aggregating their behaviours in order to recommend books (e.g., Amazon), movies (e.g., Netflix) or websites (e.g., Google or Delicious). The size of the aggregations of people connected by social technologies can vary from two to many millions. The openness and potential for sharing makes social technologies particularly useful for education and learning applications, since in many ways the vast majority of learning is a social activity. As we shall see, many of our most powerful pedagogical theories and understandings of learning processes assume that knowledge is both created and validated in social contexts. Thus, developments in social technologies hold great promise to affect teaching and learning.

While social software has existed for many decades, the term social software is often attributed to Clay Shirky (2003), who defined it as “software that supports group interaction.” This definition is so broad that it includes everything from email to immersive, virtual worlds, so it has been qualified by a number of authors. Allen (2004) noted the historical evolution of social software tools as the Internet gained capacity to support human interaction, decision-making, planning, and other higher level activities across the boundaries of time and space, and less adeptly those of culture and language. Levin (2004) noted the affordance of the Web to support new patterns of interconnection that “facilitate new social patterns: multi-scale social spaces, conversation discovery and group forming, personal and social decoration and collaborative folk art.”

Coates (2002) describes the functional characteristics of social software to extend human communication capabilities. He notes the enhanced communication capacity provided by social software over time and distance, which are the traditional challenges of access addressed by distance education. He goes on to point out that social software adds tools to help us deal with the complexities and scale of online context such as collaborative filtering, spam control, recommendation, and authentication systems. He argues that social software supports the efficacy of social interaction by alleviating challenges of group functioning such as decision-making, maintaining group memory, versioning, and documenting processes.

A useful addendum to the various definitions of social software was added by Mejias, who defined social software as “software that allows people to interact and collaborate online or that aggregates the actions of networked users” (2005; emphasis added). The benefits that accrue to learners from this aggregation of the ideas, behaviours, and attitudes of others are defining features for many of the forms of collective social software defined in this text. We are pleased that, unlike many others, this definition includes systems that are only obliquely “social” in the traditional sense that emerges from face-to-face interaction, such as Google Search, whose PageRank algorithm uses implicit recommendations supplied by the crowd, and Amazon’s book recommendation feature, which employs similarities in user behaviour to help guide future choices. Social technologies extend the possibilities for us to help one another to learn in ways that were difficult or impossible in the past, and that is the focus of this book.

To further clarify the term in an educational context, we have in the past defined educational social software as “networked tools that support and encourage individuals to learn together while retaining individual control over their time, space, presence, activity, identity and relationship” (T. Anderson, 2005, p. 4). This definition speaks to the right of learners and teachers to retain control over the educational context in which they are engaged. It obviously resonates with distance educators who define their particular form of education by the increase in access in many dimensions to the educational process. However, social software is also being used on campus where it affords and encourages communication, collaboration, and social support within and outside of normal classroom learning, maintaining and building new social ties.

Beyond formal settings, social software has become one of the most central means enabling lifelong learning: Google Search and Wikipedia, both social technologies that benefit from extremely large crowds, are the first port of call for many learners seeking knowledge. Whereas learning with others in the past often meant giving up certain freedoms, such as those of place, time, or direction, increasingly our social technologies support networked individualism (Rainie & Wellman, 2012), where we interact with others but remain at the centre of our social worlds.

We also focus on the increasing rights and freedoms provided to learners by the advent of networked learning. Students now have options to choose the mode, the pace, the presentation format, the credential, and the degree of cooperative versus individual learning they wish to engage in, both in formal and informal learning contexts.

By definition, learning is associated with change. We change our ideas, actions, capacities and skills in response to challenges and opportunities. For most types of learning, the necessary knowledge or skills needed to solve our problem already exists in the mind of another person or resource. Our job as learners and educators is to provide tools, paths, and techniques by which this knowledge can be accessed, appropriated, constructed, and re-constructed so as to meet our individual and collective needs. Social software is designed to help in two fundamental ways. First, it creates a transparency by which we can locate individuals or groups of humans with the tools and means to help us learn. Second, it serves to effectively leverage the tacit knowledge contained in the minds of others and the myriad learning objects in ways that can easily be adapted to individual and collective needs. Like other Internet resources, it does this with an economy of scale that allows global access at an almost negligible cost. For the purposes of this book, we use the terms “social media” and “social software” interchangeably although, technically speaking, social software is the tool that enables social media to be embodied or enacted.

Media used socially supports three obvious kinds of interaction:

1. One-to-one: a single person engaging with one other person

2. One-to-many: a single person or entity broadcasting to many people

3. Many-to-many: multi-way interaction between many people

A less obvious kind of interaction that is of particular significance in social media is many-to-one, in which the actions, judgments, or behaviours of many people are aggregated, transformed, and re-presented to an individual. A classic example of this is Google Search. Google’s PageRank algorithm takes into account the number of links made to a page, and the number of links to the pages that link to the page, and so on, treating each as an implicit recommendation of the page that it links to. This is a form of latent human annotation (Kleinberg, 1998) where behaviours that may have occurred with other purposes in mind are mined and repurposed to serve the needs of individuals.

Social software tools may support synchronous interaction (real-time communication) and asynchronous interaction (communication that may be viewed, listened to, or read by the recipient at a different time than when it was posted), or both.

Social tools may afford direct or indirect forms of interaction: their purposes can vary from enabling communication to collaborative discovery, cooperative sharing, and more, often with layers of mediation that may either reveal or obscure the people who leave traces, intentional or otherwise, for others.

A vast number, perhaps the majority, of social software systems are aggregations of different forms, offering one-to-one, one-to-many, many-to-many, many-to-one, asynchronous, synchronous, direct and indirect interaction. Like all technologies, social technologies are assemblies and may be used with or as part of further assemblies (Arthur, 2009). In order to provide concrete and familiar examples, in table 1.1 we list a range of families of social software, broadly categorizing them by the predominant forms of social engagement that they involve.

Table 1.1 Examples of social software.

images
images
images
images
images

We have broadly categorized a range of social tools to describe the predominant social features in terms of whether they are one-to-one, one-to-many, many-to-many, many-to-one, and direct or indirect, but many tools can be used for a range of purposes that could, at a stretch, allow them to fit into most categories. For example, in some cases email interactions might be almost as instantaneous as a text chat, yet we have characterized it as an asynchronous tool because that is its main use. A Skype system could be used to broadcast from one to many, but normally it is a two-way or multi-way conversation. It is also true that many tools are amalgams or mashups of different tools: YouTube, for example, not only includes options for discussing and rating videos but also allows social networking, social tagging, and more. Several tools fit into more than one category: for instance, immersive worlds usually incorporate text and video chat as well as other features.

In the same way that the definitions of social software are numerous, so are its functions and forms, and most importantly, the ways in which these tools are used to enhance teaching and learning. In this section we provide an overview of some of the major pedagogical contributions of social software for both formal and informal learning.

The influential work of Etienne Wenger (1998) focuses on the value that community brings to professional practice and informal learning. Educators have applied these sociological insights to communities created during formal study, and have argued that “community is the vehicle through which online courses are most effectively delivered regardless of content” (Palloff & Pratt, 2005, p. 1). The creation of community is both an educational product and a process. Educational communities can extend beyond the time and place of study to become the tool that forms and cements values, attitudes, connections, and friendships. They thus become the crucibles within which the hidden curriculum of higher education is formed. This hidden curriculum can be used to propagate social and class advantages (Margolis, 2001), but also teaches learners to act as experts and professionals, and to play the educational game effectively (T. Anderson, 2002).

Community also creates social obligations and entitlements. Members of learning communities are empowered to both give and receive help from fellow members. Learning in formal education contexts is rarely easy, and many times the aid, encouragement, or obligation to or from community members provides a necessary motivation to persevere.

Knowledge is information that has been contextualized, made relevant, and owned. Understanding and attending to context becomes more critical as information moves throughout our global community. Context both allows and constrains us from making sense of information and constructing a coherent framework in which to situate it. Of course, context includes language and the more subtle forms of cultural marking, but it also extends to relevance, applicability, and understandability. If information is obscure or incomprehensible to an individual or group, it will be discarded and remains outside of the context of understanding that allows it to be internally recreated as wisdom. Knowledge is also relevant to a real concern. We are bombarded with information in many formats delivered through numerous forms of media. We cannot and should not attend to it all, yet information we do wish to own must prove relevant to a real interest. Finally, knowledge is information that is owned by individuals and aggregations of individuals. This ownership is expressed in its capacity for recollection and application. Owned knowledge is valued, but unlike physical objects, knowledge gains value when it is given away, shared, replicated, and reapplied. Unlike rival goods, where possession by one person excludes ownership or use by others, knowledge is a non-rival good, which loses none of its original value to its possessor when it is shared (Benkler, 2006). Indeed, the act of sharing can enhance the knowledge of its possessor, because having to communicate an idea or skill to another is often reinforcing or even transformative: there is no better way to learn than to teach. Furthermore, knowledge gains in its capacity to be transformed and transforming as it is applied in different contexts, enabling its possessors to do new things and use it in new ways that its originators may not have imagined.

When social software becomes a component of formal education, students and teachers interact with one another in more meaningful ways, creating a variety of positive results. Ted Panitz (1997) details over 67 benefits from engaging in collective learning, arguing that collaborating reduces anxiety, builds self-esteem, enhances student satisfaction, and fosters positive relationships between students and faculty. Blog authors report feeling motivated by the opportunity to share their knowledge and expertise, experience pleasurable reactions to comments and the recognition of others, and positive reassurance about their own thinking and writing (Pedersen & Macafee, 2007). Engagement in the learning process is reflected in time spent studying, the level of enjoyment, and the quality of work and learning outcomes (Chickering & Gamson, 1987; Herrington, Oliver, & Reeves, 2003; Kearsley & Schneiderman, 1998; Richardson & Newby, 2006). Engagement is so critical to learning that Kearsley and Schneiderman have developed a whole theory of learning based upon it, and Shulman argues that engagement is both a critical process to learning development and an outcome of education itself: “[an] educator’s responsibility is to make it possible for students to engage in experiences they would never otherwise have had” (2002, p.38).

Although it would be an exaggeration to suggest that all students enjoy working (and learning) with others, the opportunity to make new social contacts and build new networks of friends is an important reason why many engage in formal educational activities.

Unlike the development of computer-assisted instruction, tutorials, and other multimedia-enhanced forms of online learning, it is easy and very cost effective to include social networking in formal and informal learning. The content of educational social networking is, for the most part, created by the participants in the process of their learning. The most common networking activity is to make comments and engage in discussions relating to the subject of study. However, there are many other effective social learning activities, including the selection and annotation of learning resources (educational tagging), formal debates and guided discussion, collaboratively creating reports and presentations, individual and group reflections, and so on. All of these activities are created by participants in the process of learning. The archives of these activities become content for further study and reflection across course sections, years, and institutions.

The “conversant” forms of online learning have been criticized as not being scalable or cost effective—at least compared to more traditional, individual-based forms of distance education (Annand, 1999). Social software can, however, be used to enhance and focus on students responding to and helping one another as peers, thereby creating models of formal learning that may be more cost effective than those organized by teachers. While not denying the importance of “teacher presence” at some point in an educational transaction, there is a need for learning designs that are scalable and can meet the learning needs of the millions of learners who are currently unable to participate in more traditional forms of campus-based education (J. S. Daniel, 1996).

Active learning engages learners emotionally and cognitively in the education process. Although not without controversy in the educational world, active learning flows from constructivist ideals in which learners shape their own understandings, ideas, and mental models. Activities that induce active learning include debates, collaborative learning, problem-solving and, most recently, inquiry (Chang, Sung, & Lee, 2003). Active learning has been associated with ideas of discovery, as opposed to guided inquiry, but as Mayer (2004) notes, cognitive engagement is critical to all forms of learning. Social networking creates both motivations and obligations among learners to work together, or at least in harmony, through the learning process. Activities that draw out learners’ interests, expertise, and individual gifts benefit not only the recipient of this expertise but also gives learners the thrill and expanded knowledge associated with helping or teaching another (B. Daniel, Schwier, & McCalla, 2003).

Unlike many forms of communication, most types of social software leave persistent trails documenting the activities and conversations of participants. Although anonymous and fantasy-based approaches can be supported in social software contexts, in both formal and informal learning these are not the norm, and in most cases deception and anonymity are not acceptable social behaviours. The transparency and persistence of learning activities give rise to conditions that are ideal for the development of social capital. Individuals who have contributed the most to the community see their contributions giving them authority and prestige within that community and across their networks.

Social software, especially social networking, blurs the distinction between formal and informal learning. Research on learning often bifurcates learning into two often mutually hostile camps: formal education, with its institutional champions of accreditation, and informal learning, championed by advocates of community, workplace, informal and incidental learning. For example, Marsick and Watkins (2001, p. 28) conclude that informal learning is characterized as being:

• Integrated with daily routines—in contrast to formal education, which takes place at times and places defined by the educational institution.

• Triggered by an internal or external jolt. In formal education, the “jolt” almost always originates with requirements set by the teacher.

• Not highly conscious. Although formal education has also been criticized for putting learners to sleep in lecture theatres, the intent of the education is always made explicit in terms of expected learning outcomes.

• Haphazard and influenced by chance. In formal settings, the course outline ensures that curriculum is followed and certainly not influenced by chance.

• An inductive process of reflection and action. Although not excluded, reflection and action where ideas are validated in real-life contexts are rare in formal education.

• Linked to the learning of others. Formal education is almost always a contest among registered students for marks awarded by teachers, making the establishment of collaborative and supportive learning challenging, though not impossible.

Using Marsick and Watkins’s criteria, we argue that social networking integrates formal and informal learning, since its tools and context are used to coordinate both formal learning, and workplace, family and community ideas, relations, and activities. Jolts or triggers arise both from formal learning interactions and occurrences in real life, and social networking provides a forum where these jolts can be discussed, assessed, and reflected upon. Reflection and the reactions of others in social networking contexts are most often stimulating and rewarding. Social networking spans across both formal education and learners’ private and public lives. Thus, it is influenced both by chance and the requirements of formal education. Finally, social networking is, by definition and intense practice, linked to the learning of others. This linking may take place through formal collaborative tasks assigned by teachers, through reactions, feedback, and response to blogged reflections, or through spontaneous conversations in real time online or in face-to-face encounters.

It has always been challenging to differentiate between the benefits and costs of education and how they are apportioned between the wider social community and the individual. John Dewey (1897) argued that “the school is primarily a social institution” and that “all education proceeds by the participation of an individual in the social consciousness of the race” (p.77), celebrating the role in which education is used to pass on to learners the benefits of socially derived knowledge. But the debate over education’s cost also reveals that it benefits the individual, and this is readily verified by noting the earning gap between citizens with high and low education levels (although this is a circular argument—employers seek those with qualifications and, in the case of higher education, the weeding out of those with less innate capability by university admission procedures means that many of the differences may be put down to intelligence and aptitude, or in some cases, social class). But the benefits of schooling to either individuals or the state depend upon learners being able to work, collaborate, and engage in discussion and decision-making with others. Social networking both encourages and affords opportunities to practise these social skills in contexts that range from small groups to large and widely distributed networks.

Generally the possession of social capital, like other forms of capital, allows individuals and groups to accomplish their goals because they can draw on the resources, support, and encouragement of these resources—in this case, human beings. Sandefur and Laumann (1988) argue that social capital confers three major benefits upon its owners: information, influence and control, and social solidarity. Social networking creates and enhances relationships among learners. These relationships can then be used by individuals and groups to achieve goals that are frequently beyond their individual capacity to attain (S. E. Page, 2008).

Most social software applications have very little functionality until they attract a significant number of users. In addition, their value to individual users increases as a function of other users. To attract high numbers of users, social software architects spend considerable effort in making interfaces friendly, intuitive, and easy to navigate. Social software has been built in an era dominated by “Net generation” learners who have adapted and adopted computer tools, but who are equally known for low attention thresholds—especially for confusing or difficult-to-understand applications. To be more precise, retaining such users requires rapid learnability. It is not the be-all and end-all: even those social tools that usability studies reveal as being very difficult to use may succeed due to their perceived value to the community. However, when all else is equal, learnability can mean the difference between success and failure in a social software system.

Social software is accessible in two senses of the word. First, the contributions of others in social software systems and tools are often not hidden behind passwords or closed classroom doors, nor are they archived in inaccessible libraries. Rather, social software has a tendency to meet the needs of a growing number of users. Failure to evolve results in the wreckage of empty and unused sites—a common sight on the changing twenty-first-century Web.

In a second sense, most social software is accessible to all learners, including those with physical or mental constraints. For example, being digital, social software can be reformatted into large print or audio formats to meet the needs of visually impaired users, or presented in alternative forms to those with dyslexia. It also makes no difference to social software users if input came from a voice, a keyboard, a Bliss board, or a drawing tablet. Social software can also be retrieved on many types of devices, ranging from home theatres to cell phones. This accessibility enables social software to be used for high-quality learning by anyone, anywhere. However, we do recognize that this is far from universally true, and there is a counter-trend to release early and often to appeal to the widest audience, sometimes making accessibility a secondary consideration.

Social relationships are built on reputation and responsibility. Social software seeks to return the ownership of comments to their creator. Thus the persistence of contribution across formal and informal communities and the technical capacity for all participants to link, search, and archive contributions across these communities is critical. But social software also allows for new types of ownership. In pre-digital times, possession implied exclusive use—if I lost my possession, I was no longer able to use my property. Digital property, like the flame of a candle, is not diminished when shared with others. Indeed, the sharing of both candles and digital artifacts creates more light for the benefit of all.

Being digital and thus searchable, social contributions (with permission of the participants) can be used, referenced, researched, extracted, reused, and recycled across time and space (Erickson & Kellogg, 2000). The use of syndication, automatic and cooperative tagging, indexing, and spider tools allows social software contributions and information about their authors to be searched, harvested, and extracted.

Although a powerful and expressive communication genre, and the one upon which most academic knowledge is inscribed, text is but one format for social expression. Social software supports audio (music, voice conversation, and podcasts), video (videoconferencing, videocasts), and graphics (photos, drawings, and animation displays). These can be combined to create immersive worlds, waves, VoiceThreads, and many other engaging media combinations.

Knowledge is built from active engagement with conflicting and confounding ideas that challenge older, pre-existing knowledge (Piaget, 1952). Given the capacity of online social learning to span the distance of both space and time, it is not surprising that learners become aware of the ideas of others. Since these ideas originate in different contexts, it is likely that some will be as divergent as they are convergent. Through this divergence, learners are forced to make explicit much of their implicit and pre-existing knowledge so that it can be communicated effectively to others. At the same time, the dissonance that arises when learners are exposed to divergent ideas forces them to defend, strengthen, alter, or abandon their existing ideas.

Typically, social software contains elements that algorithmically combine the ideas, actions, or decisions of many to produce an unplanned result. For example, tag clouds form from the tagging behaviour of a system’s users, with more popular tags being emphasized, typically displayed with a larger font. No one has decided which tags should be emphasized or not: the pattern emerges from the combined behaviours of many people.

Similarly, the buying behaviour of previous customers can be used to offer recommendations to future buyers who have exhibited similar purchase patterns, whether through explicit recommendation or simply by observing that people who bought a particular item also bought other items. As with tagging, no individual has decided that a particular book should be recommended: group behaviour dictates recommendations. There are many examples of such emergent patterns in social software systems, and we will discuss the implications of these at length later in this book.

All technologies are assemblies of other technologies. That is how they evolve, and how they are built, through combination and recombination (Arthur, 2009). Some of those technologies in an assembly will be harder and more deterministic, some softer and open to change by end users. Softer technologies are those that incorporate humans in their design and enactment, allowing tools to be used in many different ways. Social technologies are inherently soft. Social technology applications are inseparable from the processes, rules, norms and techniques that are assembled with them. The technologies provide opportunities, and the users as individuals, groups, and networks determine how to best exploit them. Together they proceed in a dance (T. Anderson, 2009), intricately interwoven, mutually affective, and inseparable.

Being soft, social software is rich with assembling potential for human activities, and may be deeply interwoven with social and organizational processes. Unlike more specialized tools that are designed for particular purposes and have little flexibility, if any at all, for alternative uses, social software enables creative uses and purposes that its designers probably never dreamed of. It is thus a vehicle for change and creativity in learning and teaching.

Every new technology that adds to those that came before extends what Kauffman (2000) refers to as the “adjacent possible:” the powerful driving force behind evolution and change in many aspects of the natural and built environment. Each time a new capacity evolves, it opens up avenues that were not there before. For example, it was necessary for light-sensitive cells to develop in animals before the potential existed for them to evolve into eyes. When we build a new technology, it opens up new paths for change. It is not just that we gain new capabilities, but that more potential capabilities consequently emerge. It would have been inconceivable for humans to reach the moon without a succession of earlier technologies, each building on and often incorporating the last, from the humblest rivet or metallurgical technique to the most sophisticated computational and propulsion devices.

In every way, not only do we, as Newton suggested, stand on the shoulders of giants, but everything that matters to us, from our bodies’ cells to our television sets, emerges from the history of what came previously. Moreover, this expansion is increasing at an exponential rate (Kelly, 2010). The rapid proliferation of social software tools is opening up vast landscapes of possibility that were never there before and, because such technologies are soft and combinable, their affordances are far greater than more rigid or, as U. M. Franklin (1999) puts it, prescriptive technologies.

It is no exaggeration to claim that the number of users and applications of social software exploded during the first decade of the twenty-first century. The site Go2web20 provides links to over 3,000 unique Web 2.0 applications, most of which could also be classified as social software, and very few of which existed a decade ago. These networked applications have user numbers that range in size from very small to large country- or even continent-sized populations. The successful mega social software sites including Facebook, Twitter, Google+, YouTube, Tumblr, Pinterest, MySpace, SecondLife, Blogger, and Flickr number their user accounts in the tens of millions, and tabulations of monthly unique visitors in the millions or even billions. As we write this in early 2014, Facebook has over 1.3 billion user accounts (Statisticbrain, 2014a), Twitter over 645 million (Statisticbrain, 2014a), LinkedIn over 227 million (Linkedin, 2014), and Google+ has over 1.15 billion accounts, though the way this is designed to integrate far beyond the simple site-based approach used by Facebook means that only around a third of those are actively using the system (Wearsocial, 2014). WhatsApp, a fast growing mobile messaging system recently acquired by Facebook, has 450 million monthly users, growing at a rate of a million a day (Wearsocial, 2014). An astonishing 2 billion videos are watched on YouTube every day (Bullas, 2012) but this pales in comparison to users sharing content and links with Google +1 or Facebook shares. Searchmetrics predicts that, by May 2016, there will be 1096 billion Google +1s every month, and a further 849 billion via Facebook. Simple interactions such as sharing show not just passive interest in content but active social engagement with others.

A 2007 Canadian survey of a single social software application, Facebook, revealed that some cities had over 40% of the population as registered users (Feeley & Brooks, 2007). In 2011, the proportion of Canadian users had reached over 50%, a little below the global average. In Indonesia and the Philippines, social network use is well over 70%, and it is 60% in Russia and India (Broadband Commission, 2012, p. 9) Among Generation Y, social software use encompassed over 96% of the sampled population as early as 2007 (Grunwald Associates LLC, 2007). By 2010, the rate of growth for most social sites was still rapidly increasing, with Facebook experiencing a 7% increase in users year over year, and Twitter 11% (comScore, 2011). Perhaps the most interesting growth is seen in mobile social software. Though social media technology fit well with conventional mobile phones, broadband makes their data-intensive operation possible. With over 2 billion mobile broadband subscriptions worldwide compared to a mere 696 million fixed-line broadband subscriptions (Broadband Commission, 2013, p.12), with broadband subscriptions in the third world now exceeding those in the developed world, and with anticipated growth to 7 billion mobile broadband subscriptions by 2017, it seems almost certain that mobile social media are bound to dominate (Broadband Commission, 2013, p.14).

The largest growth in social software use is in older users, with a 36% increase in use between 2009 and 2010 for 55–64 year-old users and 34% for those 65+, though the majority are still in the 25–44 age range (comScore, 2012), and 98% of Americans in the 18-24 age range use social media of some kind (Statisticbrain, 2014 b). The demographic spread across different social software systems varies widely and reflects a maturing and ever more diverse range of systems and tools. It should be noted that many surveys do not consider tools such as YouTube, Wikipedia, and Google Search to be social media, despite the fact that they are entirely powered by the crowd and exist only because of user-generated content.

Social software includes a variety of types of networked applications offering different forms of social activity and focusing on different target audiences and interests. Social software is used to connect and reconnect people to families, past and current schoolmates, coworkers, local neighbours, and others sharing the same physical spaces. But it also links those separated by vast differences of geography and as importantly, differences of culture, age, income, and race. Besides supporting and enhancing existing relationships, social software also facilitates the discovery and building of new relationships through profiles, recommendations, observations, and charting of users with similar interests or activity patterns.

The use of social software for personal reasons challenges educators used to having control over the tools used in their programs. Social software, unlike institutionally-based learning management systems (LMS), is often either not owned by the educational institution or incorporates elements that come from beyond it, is focused on individuals and their relationships rather than courses, and is under the control of these users, not teachers. In most current instances, social software applications have not been designed specifically for students enrolled in formal education programs. Rather, students join social networks for personal reasons, motivated by a desire to expand and enrich their social lives. Thus, a central challenge of this book is to help educators both understand social software use and equip them with the knowledge and skill to use educational software in formal courses and as doors to lifelong learning opportunities for themselves and their students.

To date, much social software use has focused on building communities in parallel or outside of formal education. For example, sites such as Facebook support communities of students enrolled or at least interested in a particular university or school. These groups often contain thousands of members and are used for discussions and announcements about special activities, providing a way to connect users who share a common interest in that particular institution—or at least its social life. We believe that these tools are too important and powerful to be excluded from the formal curriculum, that they can be used to support and encourage learning in all subject domains. In addition, the use of social software applications in formal education encourages and supports learners with lifelong learning skills that they will be able to apply beyond their graduation from any formal education program. Finally, social software develops “the kinds of skills needed to meet the challenge of earning a living in the twenty-first century—flexibility, adaptability, collaborativeness and problem-solving prowess—bear a one-to-one congruence with the constellation of skills and outlooks needed to engage in every other key participation opportunity related to human capacity development” (Levinger, 1996, Chapter 2, para. 16).

Recent years have seen a massive growth in MOOCs (Massive Open Online Courses), with courses from organizations like edX, Coursera, Udacity, and others gaining tens of thousands of participants. Their forebears, starting with CCK08—a connectivist course with a few thousand users (Downes, 2008b)—remain intensive in their use of social software, and could not run without extensive networked technologies such as Twitter, blogs, and social aggregation platforms. While many popular MOOCs employ predominantly instructivist approaches to teaching, they also provide tools for social interaction—as a result, a large ecosystem of social groups and networks has sprung up around them, with learners helping one another, exchanging ideas, and learning together in more or less formal groupings (Severance, 2012).

Non-formal and informal intentional learning outstrips formal learning in both time spent on the activity and the number of people engaged in it many times over, and has always done so. Tough’s research (1979) in the 1970s suggested that adults typically spent around 200 hours every year on intentional learning activities. In 2000, Livingstone found that Canadian adults spent considerably more time on informal learning than formal, in the area of 15 hours per week. Were these research studies to be repeated today, this amount of time may be considerably higher. Google’s search engine is used by over 85% of Internet users (Pick, 2012) and whenever someone performs a search, it is usually in order to learn something or be reminded of something that they already know. Perhaps it would be more accurate to say that, in keeping with connectivist precepts, people know that the knowledge they seek resides in the network—even if they often do not need to retain it—but, in one way or another, they are seeking knowledge. In other words, Google Search is a learning technology and, by any measure, the most widely used distinct learning technology product in the world.

While language and books are undoubtedly more important learning technologies, there is no single book or language that reaches a wider audience than Google Search. Meanwhile, Wikipedia, its nearest competitor as a learning technology, receives close to 10 million visits an hour to its English-language site alone, with nearly 8 billion page views of over 4 million articles produced by tens of thousands of editors, over 33,000 articles described as “active”, which means having had five or more edits per year (Wikimedia, 2014). Wikipedia gets further millions of visitors to its simplified English-language and Chinese sites, with billions of visitors to other sites using less commonplace languages. But Google Search and Wikipedia are just the tip of a massive iceberg of informal and non-formal learning that is enabled by the social web. Sites such as StackOverload, Answers.com, Lifehacker, How Stuff Works, Instructables, as well as millions of YouTube videos and thousands of less well-known sites provide more or less formal instruction to millions of people every day. Twitter, Facebook, and Google+ are rich sources of knowledge and information, providing simple questions and answers for study groups, reading groups, and collaborators. Despite the pointless trivia that often passes through it, the social web can be appreciated as a web of learning.

Social software functions in many ways and is as divergent in forms, systems, and software packages as it is in the interest and skills of users. However, Mejias (2005) argues that social software serves two purposes. The first is to manage ever-larger sets of social relationships, such that meaningful and functional social relationships can be built and effective communications can be maintained despite the numbers, distances, or time barriers that separate them. Second, social software affords us opportunity to create and support more intimate and authentic relationships between our closest friends, families, and colleagues. It also helps us to build social confidence, and sometimes, new relationships. Ellison, Steinfield, and Lampe (2007) have found that Facebook usage is associated with increased formation of social capital, especially for those with low self-esteem and lower life satisfaction. They also found that both bonding social capital (strengthening relationships with those whom one already has a primary relationship) and bridging social capital (weaker, more extended relationships with others) were associated with increased use of Facebook.

These direct social uses are important, but they are by no means the only ways that social software can provide value to learners. The social net creates an ecology “involving not only technologies but also other people, values, norms and social contexts” (Petrič, 2006, p. 293). This enables a learner to construct knowledge by seeing his or her place in the world, and hence grasping connections not just with other people but also with the world itself.

An obvious benefit that is not addressed by Mejias’s classifications is that social software systems enable learners to create content, find answers to questions, make and receive challenges, and provide opportunities to see the world differently. A less obvious benefit is that social software can be used to aggregate the opinions, beliefs, and discoveries of many people in order to guide us through our learning journeys with little or no direct social interaction at all. Social software is not just social glue but an enabler of the creation, discovery, and presentation of new knowledge.

Other people have many roles to play in the learning process, not just in the construction of factual or procedural knowledge. From an educational perspective, social software can, for instance, enable users to:

• Provide helpful resources

• Help them move into the next zone of proximal development

• Solve problems

• Create more complex artifacts

• Present multiple perspectives and enrich connections

• Model different ways of thinking

• Explore ethical problems

• Learn to work with others

• Connect ideas from different perspectives and fill in gaps to connect existing ideas.

We have already seen that there are many different forms of social software, which are becoming ubiquitous. However, though any exchange of information may instigate or enable learning, not all social software is suited to every learning task. In table 1.2 we present a few of the more obvious ways that social software can benefit the learner. Some of these functions overlap, and many of the same tools can be used for different purposes. The intention here is to give a sense of the range of ways that social software can support or enable learning to occur.

Table 1.2 Functions of educational social software.

Function

Education Use

Example

Connecting learners

User profiles indicate interests, locations, and courses learners are enrolled in and have completed, and other demographic data allow them to connect with one another.

Facebook or Elgg profile

Building and sustaining social capital

Allows learners to gain confidence and connections that are of use in learning.

Facebook, Twitter, LinkedIn, Academia.edu, CiteSeer

Enabling discussion

Allows learners to share reviews, insights, and questions related to course content, and to teach one another, hence learning and connecting in the process.

Moodle Forum, Elgg group discussions, Usenet News

Discovering knowledge and recommendations

Allows users to share and glean recommendations from others about articles, resources, images, video, or other digital resources.

Google Search, Amazon Recommends, eBay reputations, Slashdot Karma, Amazon bookshelf, CiteULike

Meeting support

Allows groups to meet, coordinate, and document face-to-face and online synchronous meetings, hence strengthening group processes and building learning communities more effectively.

MeetUp, Doodle, Outlook

Collaborative editing

Allows groups and networks to collaboratively author, annotate, and revise documents as part of the learning process.

Google Docs, wikis, Sharepoint, Etherpad

Collaborative resource evaluation

Allows learners to evaluate a resource and display collective results, hence giving them metacognitive skills (for the one rating), and helping others to learn through the results of those ratings.

CoFIND, SurveyShare

Simulated environments

Supports informal and structured synchronous interactions with avatar gesture enhancements, enabling learning in simulated spaces that may be expensive, dangerous, or impossible to access in real life, or to simulate social encounters in a safe and non-threatening manner.

SecondLife, Active Worlds, Habbohotel, Project Wonderland, Metaplace

Social games

Multiplayer simulations allow role-playing and collaborative problem-solving and improve motivation through the presence of others, providing achievable tasks and enabling the learner’s control.

The Sims, World of Warcraft

Self-publication

The means to share insights through text, audio, and video, and provide a space for others to comment, rate, engage in dialogue or recommend them, hence providing feedback as well as benefiting those for whom the work is published.

Blogs, vlogs/vodcasts, podcasts

Chatting

Real-time chat enables feedback when it is needed. Also a good motivator due to the presence of others.

Instant messaging, audio/video conferencing (Skype), web meetings (Elluminate, Adobe Connect, LiveMeeting)

Maintaining connections and social presence

Supports means of making others aware of our current activities and reduces loneliness in an online setting, hence improving motivation.

Microblogging (Twitter), presence indicators in instant messengers, Facebook status updates

Aggregating knowledge from multiple sources and benefiting from the aggregations of others

Enables users to gather information from multiple sources and organize it according to the interests and behaviour of the Many, fostering sense-making activities performed by the crowd or for the benefit of others. There are also metacognitive benefits in categorizing and assembling/curating content.

Digg, Slashdot, Mixx Pinterest, Learni.st

Discovering people and things in one’s surroundings

Supports users’ awareness of others within a physical locale, augmenting physical space with social tagging and annotation. Enriches face-to-face learning by increasing channels of engagement.

Foursquare, Facebook location sharing, Geotagging, Google Goggles

Resource discovery

Shares resources and discoveries with others, enables annotation and tagging of content, allows many to contribute and all to discover more than they would alone or with the aid of a single teacher.

Del.icio.us, Pinterest, Digg, Slashdot, CiteULike, Furl

Finding answers and solutions

Crowdsourced approaches to finding the answers to questions, helping learners over learning obstacles, and showing ways to move forward.

Amazon Mechanical Turk, Quora, Innocentive

Getting things done or made

A means of outsourcing work to others so that unnecessary tasks that do not benefit learning may be distributed to others.

Amazon Mechanical Turk, k68.cn

Crowdfunding

Enables individuals or groups to ask for funds to help a learning project.

Kickstarter

Project coordination and workflow

Improves the ability of learners to work on a project with others or alone.

Github, Bugzilla, Microsoft Outlook, Microsoft Sharepoint

Social calendars

Helps manage the practical process of learning.

Doodle, Google Calendar, Zimbra

Crowdsourced knowledge creation

Provides answers to specific problems using the crowd.

SETI@home reCAPTCHA

Building a social application is no longer the preserve of skilled experts. Anyone with a basic understanding of a web browser can now create a social application on Ning (ning.com) or set up a group on an Elgg system, Facebook, academia.edu, or LinkedIn. In the group-oriented institutional domain, many sites provide services that allow anyone to set up courses or even whole learning management systems. It takes little extra effort to use Microsoft’s discontinued Popfly, and not much more for Yahoo Pipes, Google Gears, or Intel’s Mash Maker. Users can make basic but highly useful mashups incorporating RSS feeds, interactive maps, discussions, podcasts, and more by using systems such as iGoogle, Netvibes, Sproutbuilder, or PageFlakes. For the more proficient computer user, a rapidly increasing assortment of tools is available to build applications for Facebook or OpenSocial that take advantage of the facilities, users, variables, and processes provided by such complex social software to extend or use their functionality in a new way. Mobile app builders are widely and, sometimes, freely available: ShoutEm, Mobile App Builder, MobinCube, and many more offer simple tools to create fairly sophisticated apps for iOS, Android, and other mobile platforms.

Given the ease with which new systems can be created and/or built on top of others, we are moving toward an era that is freer of the hegemony of technocrats and learning technologists, where any teacher or instructional designer can build, select, or aggregate the tools they need to create a new learning environment adapted to the needs of their learners. There are, of course, great risks in what are typically cloud-based tools: questions about the ownership of data, privacy and security concerns, and overall system reliability. Furthermore, such innovations exist within a structural and technological hierarchy that may hinder or restrict their development. The market for applications is a rapidly evolving and highly competitive space.

Perhaps more interestingly, the same tools can, in principle, be used by the learners themselves to take the pieces that they need in the form that they need them to create their own learning spaces. The notion of the Personal Learning Environment (PLE) has been gaining traction for some years: it is an aggregation of learning tools and environments that is built by and for the learner, often using some form of widget (Downes, 2007; S. Wilson et al., 2007). Specifications for widget standards are now reaching maturity through the efforts of the W3Consortium (W3C) and it is increasingly easy to combine these into a single, web-hosted space. Mature environments such as Elgg offer such capabilities out of the box, while other systems such as Wookie are built from the ground up to do nothing but serve widgets.

Though such tools can be very powerful learning aids, the corollary is that they are also potentially very dangerous: the greater the capabilities and flexibility of a system, the more it becomes an essential feature of our learning; and thus when it goes wrong, the more disastrous the effects. We have suffered enough over the years from the weaknesses of professionally designed software for education to know that there are many pitfalls and errors that can be made. Decisions that seem reasonable in one context may be inappropriate in another: we may inadvertently lock ourselves into technologies or approaches, build unusable interfaces, limit functionalities due to lack of time or skill, and so on. Just as limited options can lead us to poor choices, limitless options can make it hard to choose right from wrong for the learning environment.

The greater our capabilities, the easier it is to do things badly. Now that such systems are entering the toolsets of amateurs, the risks of poor design and inappropriate use have been magnified. It is too easy to forget that we are doing more than simply creating content, but embodying processes and patterns of learning and teaching that may tie us to systems that imprison rather than liberate us. If we are to become the creators of tools and environments rather than developing simple learning content, we must learn to do it right. In each chapter relating to sets, nets, groups, and collectives, we provide a set of design principles and guidelines as well as a framework for understanding social systems for learning that will hopefully reduce the capacity for error. In our “Stories From the Field” chapter, we present some stories and lessons that suggest useful ways to approach social systems for learning, and highlight some of the mistakes we have made on our journey.

We have painted what is mostly a very rosy picture of the potential and, in most cases, realized benefits of social software for learning. We have yet to spend much time on the dangers and disadvantages because we wish to present a prima facie compelling case that social software is worthy of investigation. As we shall see, all software comes with biases, embedded belief systems, risks, and pragmatic, pedagogical, and ethical pitfalls that can trap even wary designers. If we are to realize the potential value of social software for learning, it is therefore vital to understand how it works, how it does its job. That is the purpose of this book.

So far, we have presented no strong theoretical framework to help explain and inform how social software fits into a learning journey, and we have not examined the different ways it can work. These topics will be covered in the next few chapters, where we examine in turn the pedagogies of social learning, the social forms that are found in social software systems for learning, and the power and risks of the collective.

Loading

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.